Simulations, Models, and the 2012 US Election
After the elections last night, I found I was looking back at Nate Silver’s blog at the New York Times, Five Thirty Eight.
Here was his predicted electoral college map:
…and here was what ended up happening (from CNN.com):
I’ve spent some time reading through Nate Silver’s methodology throughout the election season. It’s detailed enough to get a good idea of how far he and his team have gone to construct a good model for simulating the election results. There is plenty of description of how he has used available information to construct the models used to predict election results, and last night was an incredible validation of his model. His popular vote percentage for Romney was predicted to be 48.4%, with the actual at 48.3 %. Considering all of the variables associated with human emotion, the complex factors involved in individuals making their decisions on how to vote, the fact that the Five Thirty Eight model worked so well is a testament to what a really good model can do with large amounts of data.
My fear is that the post-election analysis of such a tool over emphasizes the hand-waving and black box nature of what simulation can do. I see this as a real opportunity for us to pick up real world analyses like these, share them with students, and use it as an opportunity to get them involved in understanding what goes into a good model. How is it constructed? How does it accommodate new information? There is a lot of really smart thinking that went into this, but it isn’t necessarily beyond our students to at a minimum understand aspects of it. At its best, this is a chance to model something that is truly complex and see how good such a model can be.
I see this as another piece of evidence that computational thinking is a necessary skill for students to learn today. Seeing how to create a computational model of something in the real world, or minimally seeing it as an comprehensible process, gives them the power to understand how to ask and answer their own questions about the world. This is really interesting mathematics, and is just about the least contrived real world problem out there. It screams out to us to use it to get our students excited about what is possible with the tools we give them.