Tag Archives: standards

Coding WeinbergCloud - An Update

Over the past few weeks, I've made some changes to my standards based grading system using the Meteor framework. These changes were made to address issues that students have brought up that they say get in the way of making progress. Whether you view these as excuses or valid points, it makes sense to change some of the features to match the students' needs.

I don't know what standard 6.2 means, Mr. Weinberg.

There are many places students could look to get this information. It does make sense, however, to have this information near where students sign up for reassessments.

When students select a standard, a link pops up (if the standard exists) with a description. This has made a big difference in students knowing whether the standard they sign up for is what they actually intend to assess.

Screen Shot 2015-02-13 at 1.07.27 PM

I also added the entry for the current mastery level, because this is important in selecting appropriate assessments. The extra step looking it up in the online gradebook isn't worth it to me, and asking students to look it up makes it their responsibility. That's probably where it belongs.

Can you post example problems for each standard?

The biggest issue students have in searching for online resources for a specific standard is not knowing the vocabulary that will get the best resources. There's lots of stuff out there, but it isn't all great.

I post links to class handouts and notes on a school blog, so the information is already online. Collecting it in one place, and organizing it according to the standards hasn't been something I've put time into.

Students can now see the standards for a given course, listed in order. If students are interested, they can look at other courses, just to see what they are learning. I have no idea if this has actually happened.

Screen Shot 2015-02-13 at 1.20.19 PM

Selecting a standard brings a student to see the full text and description of the standard. I can post links to the course notes and handout, along with online resources that meet my standards for being appropriately leveled and well written.

Screen Shot 2015-02-13 at 1.20.40 PM

At the moment, I'm the only one that can add resources. I've written much of the structure to ultimately allow students to submit sites, up-vote ones that are useful to them, and give me click data on whether or not students are actually using this, but I'm waiting until I can tweak some UI details to make that work just the way I want it.

Mr. Weinberg, I signed up for an assessment, but it's not showing up.

The already flaky internet in China has really gotten flakier as of late. Students are signing up for reassessments, but because of the way I implemented these requests being inserted into the database, these requests weren't actually making it to the server. I've learned a lot more about Meteor since I wrote this a year ago, so I've been able to make this more robust. The sign-up window doesn't disappear until the server actually responds and says that the insert was successful. Most importantly, students know to look for this helper in the upper left hand side of the screen:

Screen Shot 2015-02-13 at 1.14.13 PM

If it glows red, students know to reload the page and reconnect. Under normal Meteor usage conditions, this isn't a problem because Meteor takes care of the connection process automatically. China issues being what they are, this feature is a necessity.

I've written before about how good it feels to build tools that benefit my students, so I won't lecture you, dear reader, about that again. In the year since first making this site happen though, I've learned a lot more about how to build a tool like this with Meteor. The ease with which I can take an idea from prototype to production is a really great thing.

The next step is taking a concept like this site and abstracting it into a tool that works for anyone that wants to use it. That is a big scale project for another day.

Releasing my IB Physics & IB Mathematics Standards

Our school is in its first year of official IB DP accreditation. This happened after a year of intense preparation and a school visit last March. In preparation for this, all of us planning to teach IB courses the next year had to create a full course outline with details of how we would work through the full curriculum over the two years prior to students taking IB exams.

One of the difficulties I had in piecing together my official course outline for my IB mathematics and IB physics courses was a lack of examples. There are outlines out there, but they were either for the old version of the course (pre-2012) or from before the new style of IB visitation. The IB course documents do have a good amount of detail on what will be assessed, but not the extent to which it will be assessed. The math outline has example problems in the outline which are helpful, but this does not exist for every course objective. The physics outline also has some helpful details, but it is incomplete.

The only way I've found to fill in the missing elements is to communicate directly with other teachers with more experience and understanding of IB assessment items. While some of this has been through official channels (i.e. the OCC forums), most has been through my email and Twitter contacts. Their help has been incredible, and I appreciate it immensely.

At the end of the first semester for Mathematics SL, Mathematics HL (one combined class for both), and Physics SL/HL (currently only SL topics for the first semester), I now have the full set of standards that I've used for these courses in my standards based grading (SBG) implementation. I hope these get shared and accessed as a starting point for other teachers that might find them useful.

For my combined Mathematics SL/HL class:
Topics 1 - 2, IB Mathematics SL/HL

For my combined Physics SL/HL class:
Topics 1 - 2, IB Physics SL/HL

The third column in these spreadsheets has the heading 'IB XXXX Learning Objective' - these indicate the connection between the unit standard (e.g. Standard 3.1 is standard 1 of unit 3) to the IB Curriculum Standard (e.g. 2.3 is Topic 2, content item #3). Some of these have sub-indices that correspond with the item in the list of understandings in the IB document. IB Mathematics SL objective 1.3.2 refers to IB Topic 1, content item #3, sub-topic item #2.

If you need more guidance there, please let me know.

If you are a new IB Mathematics/Physics teacher accessing these...

...please understand that this is my first year doing the IB curriculum. There will be mistakes here. In some cases, I also know that I'll be doing things differently in the future. If these are helpful, great. If not, check the OCC forums or teacher provided resources for more materials that might be helpful.

If you are an experienced IB Mathematics/Physics teacher accessing these...

...I'd love to get your feedback given your experience. What am I missing? What do I emphasize that I shouldn't? What are the unspoken elements of the curriculum that I might not be aware of as a first year? Let me know. I'd love it if you could give me the information you wish you had (or may have had) to be maximally successful.

I've benefited quite a bit from sharing my materials and getting feedback from people around the world. I've also gotten some great help from other teachers that have shared their resources. Consider this instance of sharing to be another attempt to pay that assistance forward.

Results of a unit long experiment in SBG and flipping.

I've been a believer in the concept of standards based instruction for a while. The idea made a lot of sense when I first learned about the idea when Grant Wiggins visited my school in the Bronx a few years ago to present on Understanding by Design. Dan Meyer explored the idea quite a bit using his term of the concept checklist. Shawn Cornally talks on his blog about really pushing the idea to give students the freedom to demonstrate their learning in a way they choose, though he ultimately retains judgment power on whether they have or not. Countless others have been really generous in sharing their standards and their ideas for making standards work for their students. Take a look at my blogroll for more people to read about. For those unaware, here's the basic idea: Look at the entire unit and identify the specific skills or you want your students to have. Plan your unit to help them develop those skills. Assess and give students feedback on those skills as often as possible until they get it. In standards based grading (SBG), reporting a grade (as most of us are required to do) as a fraction of standards completed or acquired becomes a direct reflection of how much students have learned. Compare this to the more traditional version of grading that consists of an average of various 'snapshots' on assignments, on which grades might be as much a reflection of effort or completion as of actual learning. If learning is to be the focus of what we do in the classroom, then SBG is a natural way of connecting that learning to the grades and feedback we give to students. My model for several years now has been, well,  SBG lite. Quizzes are 15% of the total grade and test only a couple skills at a time. Students can retake quizzes as many times as they want to show that they have the skills in isolation. On tests, (60% of the total grade) students can show that they can correctly apply the set of all of their acquired skills on exercises (questions they have seen before) as well as problems (new questions that test conceptual understanding). As much as I tell students they can all have a grade of 100% for quizzes and remind those that don't to retake, it doesn't happen. I'll get a retake here or there. I am still reporting quiz grades as an average of a pool of "points" though, and this might leave enough haziness in the meaning of the grade for a student to be OK with a 60%. For this unit in Geometry and Algebra 2, I have specifically made the quiz grade a set of standards to be met. The point total is roughly the same as in previous units. It is a binary system - students either have the standard (3/3) or they don't (0/3), and they need to assess each standard at least twice to convince me they have it. I really like Blue Harvest, but my students didn't respond so well to having twowhole websites to use to check progress. While a truly scientific study would have changed only one variable at a time, I also found that structuring the skill standards this way required me to change the way class itself was structured. This became an experiment not only in reporting grades, but in giving my students the power to work on things in their own way. This also freed me up to spend my time in class assessing, giving feedback, and assessing again. More on this ahead. The details:


I started the unit by defining the seven skills I wanted the students to have by the end on this page. The unit was on transformational geometry, so a lot of the skills were pretty straight forward applications of different types of transformations to points, line segments, and polygons. I had digital copies of all of the materials I put together last year for this unit, so I was able to post all of that material on the wiki for students to work through on their own. I adjusted these materials as we moved through the unit and as I saw there were holes in their understanding. I was also able to make some videos using Jing and Geogebra to explain some concepts related to using vocabulary and symmetry, and these seemed to help some students that needed a bit of direct instruction in addition to what I provided to them one on one. I also tried another experiment - programming assignments related to applying transformations to various points. I said completing these assignments and chatting with me about them would qualify them for proficiency on a given standard. Assigning homework was simple: Choose a standard or two, and do some of the suggested problems related to those standards. Be prepared to show me your evidence of study when you come into class. Students that said 'I read my notes' or 'I looked it over' were heckled privately - the emphasis was on actively working to understand concepts. Some students did flail a bit with the new freedom, so I made suggestions for which standards students should spend a particular day working on, and this helped these students to focus. I threw together some concept quizzes for the standards covered by the previous classes, and students could choose to work on those question types they felt they had mastered. Some handed the quiz right back knowing they weren't ready. I was really pleased with the level of awareness they quickly developed around what they did and didn't understand. I quickly ran into the logistical nightmare of managing the paperwork and recording assessment results. Powerschool Blue Harvest, whatever - this was the most challenging aspect of doing things this way. I often found myself bogged down during the class period recording these things, which got in the way of spending quality face time with students around their understanding. Part of this was that I was recording progress for each standard, whether good or bad, in the comment field for each student. "Understands basic idea of translation, but is confusing the image and pre-image" is the sort of comment I started writing in the beginning. While this was nice, and I think could have led to students reading the comments and getting ideas for what they needed to work on, it was a bit redundant since I was having actual conversations with students about these facts. Here is where Blue Harvest shines - I can easily send students a quick message explaining (and showing) what they need to work on. Even more powerful would be recording the conversation when I actually talk to the student, but that would be more practical with an iPad/cell phone app to avoid lugging my computer from desk to desk. Still, I wanted the feedback to be immediate and be recorded, so I knew I had to change my approach. The compromise was to only record positive progress. If a student's quiz showed no progress, it didn't get a comment in Powerschool. If they showed progress, but needed to fix a small detail in their understanding, they might get a comment. If they clearly got it, they got a comment saying that they aced it. Two or more positive comments (and my independent review) led to a 3/3 for each standard. The other promise I made was that if they clearly demonstrated proficiency on the exam (which had non-standard questions and some things they needed to explain) I would give them credit for the standard. The other difficult issue was creating a bank of reassessment questions. My system of making a quiz on the spot and handing it out to individual students was too time consuming. I created an app(using my new Udacity knowledge) to try to do this, the centerpiece being a randomized set of questions that emphasized knowing how to figure out the answers rather than students potentially sharing all the answers. They quickly found all the bugs in my system, and showed that it is far from ready for being an actual useful tool for this purpose. I appreciated their humor and patience in being guinea pigs for an idea. As you might notice from the image above, there is a pretty strong relationship between the standards mastered and the exam scores. Most student exam scores were either the same or better following this system in comparison to previous exams. The most important metric is the fact that most students weren't hurt by going to this more student-centered model. Some student took more notes while working to understand the material than they have all year. Other students spoke more to their classmates and both gave and received more help in comparison to when I was at the front of the room asking questions and doing mini-lessons. While there was a lot of staring at screens during this unit, there was also a lot of really great discussion. I would have focused conversations with every single student three to four times a class, and they were directly connected to the level of understanding they had developed. Some needed direct application questions. Others could handle deeper synthesis and 'why is this true' questions about more abstract concepts. It felt really great doing things this way. I have always insisted on crafting one good solid presentation to give the class - the perfect lesson - with good questions posed to the class and discussions inevitably resulting from them. I have to admit that having several smaller, unplanned, but 'messier' conversations to guide student learning have nurtured this group to be more independent and self driven than I expected before we started.

Algebra 2

The unit focused on the students' first exposure to logarithmic and exponential functions. The situation in Algebra 2 was very similar to Geometry, with one key difference. The main difference of this class compared to Geometry is that almost all of the direct instruction was outsourced to video. I decided to follow the Udacity approach of several small videos (<3 min), because that meant there was opportunity (and the expectation) that only two minutes would go by before students would be expected to do something. I like this much better because it fit my own preferences in learning material with the Udacity courses. I had 2 minutes to watch a video about hash functions in Python while brushing my teeth - my students should have that ability too. I wasn't going for the traditional flipped class model here. My motivation was less about requiring students to watch videos for homework, and more about students choosing how they wanted to go through the material. Some students wanted me to do a standard lesson, so I did a quick demonstration of problems for these students. Others were perfectly content (and successful) watching the video in class and then working on problems. Some really great consequences of doing things this way:

  • Students who said they watched all my videos and 'got it' after three, two minute videos, had plenty of time in the period to prove it to me. Usually they didn't.. This led to some great conversations about active learning. Can you predict the next step in the video when you try solving the problem on your own? What? You didn't try solving it on your own? <SMIRK>  The other nice thing about this is that it's a reinvestment of two minutes suggesting that they try again with the video, rather than a ten or fifteen minute lesson from Khan Academy.
  • I've never heard such spirited conversation between students about logarithms before. The process of learning each skill became a social event - they each watched the video together, rewound or paused as needed, and then got into arguments while trying to solve similar problems from the day's handout. Often this would get in the way during teacher-centered lessons, and might be classified incorrectly as 'disruption' rather than the productive refining and conveyance of ideas that should be expected as part of real learning.
  • Having clear standards for what the students needed to be able to do, and making clear what tools were available to help them learn those specific standards, led to a flurry of students demanding to show me that they were proficient. That was pretty cool, and is what I was trying to do with my quiz system for years, but failed because there was just too much in the way.
  • Class time became split between working on the day's standards, and then stopping at an arbitrary time to then look at other cool math concepts. We played around with some Python simulations in the beginning of the unit, looked at exponential models, and had other time to just play with some cool problems and ideas so that the students might someday see that thinking mathematically is not just followinga list of procedures, it's a way of seeing the world.

I initially did things this way because a student needed to go back to the US to take care of visa issues, and I wanted to make sure the student didn't fall behind. I also hate saying 'work on these sections of the textbook' because textbooks are heavy, and usually blow it pretty big. I'm pretty glad I took this opportunity to give it a try. I haven't finished grading their unit exams (mostly because they took it today) but I will update with how they do if it is surprising.

Warning: some philosophizing ahead. Don't say I didn't warn you. I like experimenting with the way my classroom is structured. I especially like the standards based philosophy because it is the closest I've been able to get to recreating my Montessori classroom growing up in a more traditional school. I was given guidelines for what I was supposed to learn, plenty of materials to use, and a supportive guide on the side to help me when I got stuck. I have seen a lot of this process happening with my own students - getting stuck on concepts, and then getting unstuck through conversation with classmates and with me. The best part for me has been seeing my students realize that they can do this on their own, that they don't always need me to tell them exactly what to do at all times. If they don't understand an idea, they are learning where to look, and it's not always at me. I get to push them to be better at what they already know how to do rather than being the source of what they know. It's the state I've been striving to reach as a teacher all along, and though I am not there yet, I am closer than I've ever been before. It's a cliche in the teaching world that a teacher has done his or her job when the students don't need you to help them learn anymore. This is a start, but it also is a closed-minded view of teaching as mere conveyance of knowledge. I am still just teaching students to learn different procedures and concepts. The next step is to not only show students they can learn mathematical concepts, but that they can also make the big picture connections and observe patterns for themselves. I think both sides are important. If students see my classroom as a lab in which to explore and learn interesting ideas, and my presence and experience as a guide to the tools they need to explore those ideas, then my classroom is working as designed. The first step for me was believing the students ultimately wantneed to know how to learn on their own. Getting frustrated that students won't answer a question posed to the entire class, but then will gladly help each other and have genuine conversations when that question comes naturally from the material. All the content I teach is out there on the internet, ready to be found/read/watched as needed. There's a lot of stuff out there, but students need to learn how to make sense of what they find. This comes from being forced to confront the messiness head on, to admit that there is a non-linear path to knowledge and understanding. School teaches students that there is a prescribed order to this content, and that learning needs to happen within its walls to be 'qualified' learning. The social aspect of learning is the truly unique part of the structure of school as it currently exists. It is the part that we need to really work to maintain as content becomes digital and schools get more wired and connected. We need to give students a chance to learn things on their own in an environment where they feel safe to iterate until they understand. That requires us as teachers to try new things and experiment. It won't go well the first time. I've admitted this to my students repeatedly throughout the past weeks of trying these things with my classes, and they (being teenagers) are generous with honest criticism about whether something is working or not. They get why I made these changes. By showing that iteration, reflection, and hard work are part of our own process of being successful, they just might believe us when we tell them it should be part of theirs.