Tag Archives: standards mathematical practice

Before a Break: CCSS Math, Bogram Problems, and Peer Feedback

I spent the day in a room full of my colleagues as part of our school's official transition to using the Common Core standards for mathematics. While I've kept up to date with the development of CCSS and the roll-out from here in China, it was helpful to have some in-person explanation of the details from some experts who have been part of it in the US. Our guests were Dr. Patrick Callahan from the Illustrative Mathematics group and Jessica Balli, who is currently teaching and consulting in Northern California.

The presentation focused on three key areas. The first focused on modeling and Fermi problems. I've written previously about my experiences with the modeling cycle as part of the mathematical practice standards, so this element of the presentation was mainly review. Needless to say, however, SMP4 (Model with mathematics) is my favorite, so I love anything that generates conversation about it.

That said, one element of Jessica's modeling practice struck me by surprise, particularly given my enthusiasm for Dan Meyer's three-act framework. She writes about the details on her blog here, so go there for the long form. When she begins her school year with modeling activities, she leaves out Act 3.. Why?

Here's Jessica talking about the end of the modeling task:

Before excusing them for the day, I had a student raise their hand and ask, "So, what's the answer?" With all eyes on me, a quick shrug of my shoulders communicated to them that that was not my priority, and I was sticking to it (and, oh, by the way, I have no idea what time it will be fully charged). Some students left irritated, but overall, I think the students understood that this was not going to be a typical math class.
Mission accomplished.

Her whole goal is to break students of the 'answer-getting' mentality and focus on process. This is something we all try to do, but perhaps pay it more lip-service than we think by filling that need for Act 3. Something to consider for the future.

The other two elements, also mostly based in Jessica's teaching, went even further in developing other student skills.

I had never head of Bongard problems before Jessica introduced us to them. This involves looking at well defined sets of six examples and non-examples, and then writing a rule that describes each one.

Here's an example: Bongard Problem, #1:
p001

You can find the rest of Bongard's original problems here.

In Jessica's class, students share their written rules with classmates, get feedback, and then revise their rules based only on that feedback. Before today's session, if I were to do this, I would eventually get the class together and write an example rule with the whole class as an example. I'm probably doing my students the disservice by taking that short-cut, however, because Jessica doesn't do this. She relies on students to do the work of piecing together a solid rule that works in the end. She has a nicely scaffolded template to help students with this process, and spends a solid amount of time helping students understand what good feedback looks like. Though she helps them with vocabulary from time to time, she leaves it to the students to help each other.

Dr. Callahan also pointed out the importance of explicitly requiring students to write down their rules, not just talk about them. In his words, this forces students to focus on clarity to communicate that understanding.

You can check out Jessica's post about how she uses these problems here:
Building Definitions, Bongard Style

The final piece took the idea of peer feedback to the next level with another template for helping students workshop their explanations of process. This should not be a series of sentences about procedure, but instead mathematical reasoning. The full post deserves a read to find out the details, because it sounds engaging and effective:

"Where Do I Put P?" An Introduction to Peer Feedback

I want to focus on one highlight of the post that notes the student centered nature of this process:

I returned the papers to their original authors to read through the feedback and revise their arguments. Because I only had one paper per pair receive feedback, I had students work as pairs to brainstorm the best way to revise the original argument. Then, as individuals, students filled in the last part of the template on their own paper. Even if their argument did not receive any feedback, I thought that students had seen enough examples that would help them revise what they had originally written.

I've written about this fact before, but I have trouble staying out of student conversations. Making this written might be an effective way for me to provide verbal mathematical details (as Jessica said she needs to do periodically) but otherwise keep the focus on students going through the revision process themselves.

Overall, it was a great set of activities to get us thinking about SMP3 (Construct viable arguments and critique the reasoning of others) and attending to precision of ideas through use of mathematics. I'm glad to have a few days of rest ahead to let this all sink in before planning the last couple of months of the school year.

Computational Thinking and Algebraic Expressions

I am still reviewing algebra concepts in my Math 9 course with students. The whole unit is all about algebraic operations, but my students have seen this material at least once, in some cases two years running.

Not long ago, I made the assertion that the most harmful part of introducing students to the world of real-world algebra looks like this:

Let x = the number of ________

Why is this so harmful?

For practiced mathematicians, math teachers, and students that have endured school math for long enough, there are a couple steps that actually happen internally before this step of defining variables. Establishing a context for the numbers and the operations that link them together are the most important part of producing a correct mathematical model for a given situation. A level of intuition and experience is necessary if one is going to successfully skip straight to this step, and most students don't have this intuition or experience.

We have to start with the concrete because most people (including our students) start their thinking in concrete terms. This is the reason I have raved previously about the CME Project and the effectiveness of using their guess-check-generalize concept in introducing word problems to students. It forms an effective bridge between the numbers that students understand and the abstract concept of a variable. It encourages experimentation and analysis of whether a given answer matches the constraints of a problem.

This method, however, screams for computers to take care of the arithmetic so that students can focus on manipulating the variables involved. Almost all of the Common Core Standards for Mathematical Practice point toward this being an important focus for our work with students. I haven't had a great point in my curriculum since I really started getting into computational thinking to try out my ideas from the beginning, but today gave me a chance to do just that.

Here's how I introduced students to what I wanted them to do:

I then had them open up this spreadsheet and actually complete the missing elements of the spreadsheet on their own. Some students had learned to do similar tasks in a technology class, but some had not.
02 - SPR - Translating Algebraic Expressions

Screen Shot 2013-09-06 at 3.59.38 PM

The students that needed to have conversations about tricky concepts like three less than a number had them with me and with other students when they came up. Students that didn't quickly moved through the first set. I'd go and throw some different numbers for 'a number' and see that they were all changing as expected. Then we moved to a more abstract task:

It's great to see that you know how to use different operations on the number in that cell. Now let's generalize. Pick a variable you like - x, or N, or W - it doesn't matter. What would each of these cells become then? Write those results together with the words in your notebook and show me when you're done.

The ease with which students moved to this next task was much greater than it has ever been for me in past lessons. We also had some really great conversations about x*2 compared with 2x, and the fact that both are correct from an arithmetic standpoint, but one is more 'traditional' than the other.

Once students got to this point, I pushed them toward a slightly higher level task that still began concrete. This is the second sheet from the spreadsheet above:
Screen Shot 2013-09-06 at 4.06.07 PM

Here we had multiple variables going at once, but this was not a stretch for most students. The key that I needed to emphasize here for some students was that the red text was all calculated. I wanted to put information in the black boxes with black text only, and have the spreadsheet calculate the red values. This required students to identify what the relationship between the variables needed to be to obtain the answer they knew in their head had to be true. This is CCSS MP2, almost verbatim.

This is all solidifying into a coherent framework of using spreadsheet and programming tools to reinforce algebra instruction from the start. There's still plenty to figure out, but this is a start. I'll share what I come up with along the way.