Tag Archives: reflection

Holiday Travel and Exporting PearDeck Data to Desmos

One of the unique phenomena of international schools is the reality that, during a vacation, the school population disperses to locations across the world. I had students do an end of semester reflection through PearDeck, and one of the slides asked students to drag a dot to where they were going to spend the vacation.

PearDeck allowed me to see the individual classes and share these with the students one at a time. I wanted to create a composite of all of the classes together in Desmos to share upon our return to classes, which happens tomorrow. You can find the result of this effort below. This is the combined data for draggable slides from five different sessions of the same deck.

The process of creating this image was a bit of work to figure out, but in the end wasn't too hard to pull off. Here's how I did it.

The export function of a completed PearDeck session, among other things, gives the coordinates of each student's dragged dot in a Draggable slide. I could not use these coordinates as is, as graphing them on top of the map image in Desmos did not actually yield the correct locations. I guessed that these coordinates represented a percentage of the width of the image used for the Draggable background since the images people upload are likely all of different sizes. I did a brief search in the documentation, and couldn't find official confirmation, but I'm fairly sure this is the case. An additional complication for using these is that the origin is at the upper left hand corner, which is typical for programming pixel art, but not correct for use with a Cartesian system as in Desmos.

This means that an exported data point located at 40, 70 is at 40% of the width of the image, and 70% of the height of the image, measured from the top left corner.

Luckily, Desmos makes it pretty easy to apply a transformation to the data to make it graph correctly. I took all of the data from the PearDeck export, pasted it into a spreadsheet class by class, and then pasted the aggregate data into a Desmos table. Desmos appears to have a 50 point limitation for pasting data this way, which is why the Desmos link below has two separate tables.

Click here to see the graph and data on Desmos

If there's an easier way to do this, I'd love to hear your suggestions in the comments.

Making Experts - A Project Proposal

tl;dr A Project Proposal:

I'd like to see expert 'knowers' in different fields each record a 2-4 minute video (uploaded to YouTube) in which they respond to one of the following prompts:

  • Describe a situation in which a simple change to what you knew made something that was previously impossible, possible.
  • Describe a moment when you had to unlearn what was known so that you could construct new ideas.
  • What misconception in your field did you need to overcome in yourself to become successful?

I think that teachers model knowledge creation by devoting time to exploring it in their classes. I think we can show them that this process isn't just something you do until you've made it - it is a way of life, especially for the most successful people in the world. I think a peek behind the curtain would be an exciting and meaningful way for students to see how the most knowledgeable in our society got that way.

Long form:

One thing we do as teachers that makes students roll their eyes in response is this frequent follow up to a final answer: How do you know?

This is a testament to our commitment to being unsatisfied with an answer being merely right or wrong. We are intensely committed to understanding and emphasizing process as teachers because that's where we add the most value. Process knowledge is valuable. An engineering company can release detailed manufacturing plans of a product design and know they will remain profitable because their value is often stored within the process of building the product, not the design itself. This is, as I understand it, much if the power of companies dealing in open source technologies.

In a field like ours, however, students often get a warped sense of the value of process. They don't hear experts talking about their process of learning to be experts, which inevitably involves a lot of failure, learning, unlearning, and re-learning. In some of the most rapidly changing fields - medicine, technology, science for example - it is knowledge itself that is changing.

An important element of the IB program is the course in Theory of Knowledge (abbreviated TOK). In this course, students explore the nature of knowledge, how it represents truth, how truth may be relative, and other concepts crucial to understanding what it means to 'know' something to be true. From what I have heard from experienced IB educators, it can be a really satisfying course for both teachers and students. Elements of TOK are included as essential parts of all of the core courses that students take.

I can certainly find lots of specific ways to bring these concepts up in mathematics and science. Creating definitions and exploring the consequences of those definitions is fundamental to mathematics. Newton 'knew' that space was relative, but time was absolute. Einstein reasoned through a different set of rules that neither was absolute. These people, however, are characters in the world of science. Their processes of arriving at what they knew to be true don't get much airtime.

What if we could get experts in fields talking about their process of knowing what they know? What if students could see these practitioners themselves describing how they struggled with unlearning what they previously believed to be absolutely true? I see only good things coming of this.

What do you think? Any takers?

Exponent rules and Witchcraft

I just received this email from a student:

I FINALLY UNDERSTAND YOUR WITCHCRAFT OF WHY 3 TO THE POWER OF 0 IS ONE.

3^0 = 3^(1 + -1) = (3^1)*(3^-1) = 3 * (1/3)

Talk about an accomplished summer.

This group in Algebra 2 took a lot of convincing. I went through about four or five different approaches to proving this. They objected to using laws of exponents since 30 is one of the rules of exponents. They didn't like writing out factors and dividing them out. They didn't like following patterns. While they did accept that they could use the exponent rule as fact, they didn't like doing this. I really liked that they pushed me so far on this, and I don't entirely believe that their disbelief was simply a method of delaying the lesson of the day.

Whatever it was that led this particular student to have such a revelation, it makes me incredibly proud that this student chose to follow that lead, especially given that it is the middle of summer vacation. Despite labeling the content of the course 'witchcraft', I'm marking this down in the 'win' column.

2012-2013 Year In Review - Standards Based Grading

This is the first in a series of posts about things I did with my classes this year.

When I made the decision last fall to commit to standards based grading, these were the main unknowns that hung at the back of my mind:

  • How would students respond to the change?
  • How would my own use of SBG change over the course of the year?
  • How would using SBG change the way I plan, teach, and assess?

These questions will all be answered as I reflect in this post.

What did I do?

In the beginning of the year, I used a purely binary system of SBG - were students proficient or not? If they were proficient, they had a 5/5. Not yet proficient students received a 0/5 for a given standard. All of these scores included a 5 point base grade to be able to implement this in PowerSchool.

As the semester went on, the possible proficiency levels changed to a 0, 2.5, or 5. This was in response to students making progress in developing their skills (and getting feedback on their progress through Blue Harvest but not seeing visible changes to their course grade. As much as I encouraged students not to worry about the grade, I also wanted to be able to show progress through the breakdown of each unit's skills through PowerSchool. It served as a communication channel to both parents and the students on what they were learning, and I could see students feeling a bit unsatisfied by getting a few questions correct, but not getting marked as proficient yet. I also figured out that I needed to do more work defining what it meant to be proficient before I could really run a binary system.

By the start of the second semester, I used this scheme for the meaning of each proficiency score:

  • 1 - You've demonstrated basic awareness of the vocabulary and definitions of the standard. You aren't able to solve problems from start to finish, even with help, but you can answer yes/no or true or false questions correctly about the ideas for this standard.
  • 2 - You can solve a problem from start to finish with your notes, another student, or your teacher reminding you what you need to do. You are not only able to identify the vocabulary or definitions for a given skill, but can substitute values and write equations that can be solved to find values for definitions. If you are unable to solve an equation related to this standard due to weak algebra skills, you won't be moving on to the next level on this standard.
  • 3 - You can independently solve a question related to the standard without help from notes, other students, or the teacher. This score is what you receive when you do well on a quiz assessing a single standard. This score will also be the maximum you will receive on this standard if you consistently make arithmetic or algebraic errors on problems related to this standard.
  • 4 - You have shown you can apply concepts related to this standard on an in-class exam or in another situation where you must identify which concepts are involved in solving a problem. This compares to success on a quiz on which you know the standard being assessed. You can apply the content of a standard in a new context that you have not seen before. You can clearly explain your reasoning, but have some difficulty using precise mathematical language.
  • 5 - You have met or exceeded the maximum expectations for proficiency on this standard. You have completed a project of your own design, written a program, or made some other creative demonstration of your ability to apply this standard together with other standards of the unit. You are able to clearly explain your reasoning in the context of precise mathematical definitions and language.

All of the standards in a unit were equally weighted. All units had between 5 and 7 standards. In most classes, the standards grade was 90% of the overall course grade, the exception being AP Calculus and AP Physics, where it was 30%. In contrast to first semester, students needed to sign up online for any standards they wanted to retake the following day. The maximum number of standards they could retake in a day was limited to two. I actually held students to this (again, in contrast to first semester), and I am really glad that I did.

Before I start my post, I need to thank Daniel Schneider for his brilliant post on how SBG changes everything here. I agree with the majority of his points, and will try not to repeat them below.

What worked:

  • Students were uniformly positive about being able to focus on specific skills or concepts separate from each other. The clarity of knowing that they needed to know led some students to be more independent in their learning. Some students made the conscious decision to not pursue certain standards that they felt were too difficult for them. The most positive aspect of their response was that students felt the system was, above all else, a fair representation of their understanding of the class.
  • Defining the standards at the beginning of the unit was incredibly useful for setting the course and the context for the lessons that followed. While I have previously spent time sketching a unit plan out of what I wanted students to be able to do at the end, SBG required me not only to define specifically what my students needed to do, but also to communicate that definition clearly to students. That last part is the game changer. It got both me and the students defining and exploring what it means to be proficient in the context of a specific skill. Rather than saying "you got these questions wrong", I was able to say "you were able to answer this when I was there helping you, but not when I left you alone to do it without help. That's a 2."
  • SBG helped all students in the class be more involved and independent in making decisions about their own learning. The strongest students quickly figured out the basics of each standard and worked to apply them to as many different contexts as possible. They worked on communicating their ideas and digging in to solve difficult problems that probed the edges of their understanding. The weaker students could prioritize those standards that seemed easiest to them, and often framed their questions around the basic vocabulary, understanding definitions, and setting up a plan to a problem solution without necessarily knowing how to actually carry out that plan. I also changed my questions to students based on what I knew about their proficiency, and students came to understand that I was asking a level 1 question compared with a level 3 question. I also had some students giving a standards quiz back to me after deciding that they knew they weren't ready to show me what they knew. They asked for retakes later on when they were prepared. That was pretty cool.
  • Every test question was another opportunity to demonstrate proficiency, not lose points. It was remarkably freeing to delete all of the point values from questions that I used from previous exams. Students also responded in a positive way. I found in some cases that because students weren't sure which standard was being assessed, they were more willing to try on problems that they might have otherwise left blank. There's still more work to be done on this, but I looked forward to grading exams to see what students did on the various problems. *Ok, maybe look forward is the wrong term. But it still was really cool to see student anxiety and fear about exams decrease to some extent.

What needs work:

  • Students want more detail in defining what each standard means. The students came up with the perfect way to address this - sample problems or questions that relate to each standard. While the students were pretty good at sorting problems at the end of the unit based on the relevant standards, they were not typically able to do this at the beginning. The earlier they understand what is involved in each standard, the more quickly they can focus their work to achieve proficiency. That's an easy order to fill.
  • I need to do more outreach to parents on what the standards mean. I thought about making a video at the beginning of the year that showed the basics, but I realize now that it took me the entire year to understand exactly what I meant by the different standards grades. Now that I really understand the system better, I'll be able to do an introduction when the new year begins.
  • The system didn't help those students that refuse to do what they know they need to do to improve their learning. This system did help in helping these students know with even more clarity what they need to work on. I was not fully effective in helping all students act on this need in a way that worked for them.
  • Reassessment isn't the ongoing process that it needs to be. I had 80 of the 162 reassessment requests for this semester happen in the last week of the semester. Luckily I made my reassessment system in Python work in time to make this less of a headache than it was at the end of the first semester. I made it a habit to regularly give standards quizzes between 1 or 2 classes after being exposed to the standard for the first time. These quizzes did not assess previous standards, however, so a student's retake opportunities were squarely on his or her own shoulders. I'm not convinced this increased responsibility is a problem, but making it an ongoing part of my class needs to be a priority for planning the new year.

I am really glad to have made the step to SBG this year. It is the biggest structural change I've made to my grading policy ever. It led to some of the most candid and productive conversations with students about the learning learning process that I've ever had. I'm going to stop with the superlatives, even though they are warranted.

Angry Birds Project - Results and Post-Mortem


Fatal error: Cannot redeclare class VideoPress_Video in /home/weinbergmath/webapps/blog/wp-content/plugins/jetpack/modules/videopress/class.videopress-video.php on line 6