# Testing expected values using Geogebra

I was intrigued last night looking at Dan Meyer's blog post about the power of video to clearly define a problem in a way that a static image does not. I loved the simple idea that his video provoked in me - when does one switch from betting on blue vs. purple? This gets at the idea of expected value in a really nice and elegant way. When the discussion turned to interactivity, Geogebra was the clear choice.

I created this simple sketch (downloadable here)as a demonstration that this could easily be turned into an interactive task with some cool opportunities for collecting data from classes. I found myself explaining the task in a slightly different way to the first couple students I showed this to, so I decided to just show Dan's video to everyone and take my own variable out of the experiment. After doing this with the Algebra 2 (10th grade) group, I did it again later with Geometry (9th) and a Calculus student that happened to be around before lunch.

The results were staggering.

Each colored point represents a single student's choice for when they would no longer choose blue. Why they chose these was initially beyond me. The general ability level of these groups is pretty strong. After a while of thinking and chatting with students, I realized the following:

• Since the math level of the groups were fairly strong, there had to be something about the way the question was posed that was throwing them off. I got it, but something was off for them.
• The questions the students were asking were all about winning or losing. For example, if they chose purple, but the spinner landed on blue, what would happen? The assumption they had in their heads was that they would either get \$200 or nothing. Of course they would choose to wait until there was a better than 50:50 chance before switching to purple. The part about maximizing the winnings wasn't what they understood from the task.
• When I modified the language in the sketch to say when do you 'choose' purple instead of 'bet' on the \$200  between the Algebra 2 group and the Geometry group, there wasn't a significant change in the results. They still tended to choose percentages that were close to the 50:50 range.