Monthly Archives: February 2016

Standards Based Grading & Streamlining Assessments

I give quizzes at the beginning of most of my classes. These quizzes are usually on a single standard for the course, and are predictably on whatever we worked on two classes before. I also give unit exams as ways to assess student mastery of the standards all together. Giving grades after exams usually consists of me looking at a single student's exam, going standard by standard through the entire paper, and then adjusting their standards grades accordingly. There's nothing groundbreaking happening here.

The two downsides to this process are that it is (a) tedious and (b) is subject to my discretion at a given time. I'm not confident that I'm consistent between students. While I do go back and check myself when I'm not sure, I decided to try a better way. If you're a frequent reader of my blog, you know that either a spreadsheet or programming is involved. This time, it's the former.

Screen Shot 2016-02-25 at 9.07.41 AM

One sheet contains what I'm calling a standards map, and you can see this above. This relates a given question to the different standards on an exam. You can see above that question 1 is on only standard 1, while question 4 spans both standards 2 and 3.

The other sheet contains test results, and looks a lot like what I used to do when I was grading on percentages, with one key difference. You can see this below:

Screen Shot 2016-02-25 at 9.10.02 AM

Rather than writing in the number of points for each question, I simply rate a student's performance on that question as a 1, 2, or 3. The columns S1 through S5 then tally up those performance levels according to the standards that are associated with each question, and then scale those values to be a value from zero to one.

 

This information was really useful when going through the last exam with my ninth graders. The spreadsheet does the association between questions and standards through the standards map, so I can focus my time going through each exam and deciding how well a student completed a given question rather than remembering which standard I'm considering. I also found it much easier to make decisions on what to do with a student's standard level. Student 2 is an 8 on standard 1 before the exam, so it was easy to justify raising her to a 10 after the exam. Student 12 was a 7 on standard 4, and I left him right where he was.

 

I realize that there's a subtlety here that needs to be mentioned - some questions that are based on two or three standards might not communicate effectively a student's level with a single 1, 2, or 3. If a question is on solving systems graphically, a student might graph the lines correctly, but completely forget to identify the intersection. This situation is easy to address though - questions like this can be broken down into multiple entries on the standards map. I could give a student a 3 on the entry for this question on the standard for graphing lines, and a 1 for the entry related to solving systems. Not a big deal.

I spend a lot of time thinking about what information I need in order to justify raising a student's mastery level. Having the sort of information that is generated in this spreadsheet makes it much clearer what my next steps might be.

 

You can check out the live spreadsheet here:

Standards Assessment - Unit 5 Exam

Boat Race, Revisited

A couple of years ago, I was impressed with Dan Meyer and Dave Major's creation of Boat Race, an activity that involved navigating around buoys with some knowledge of bearings. I hoped to use his creation for my ninth graders two years ago, but Boat Race in its original form was zapped from the interwebs. At the time,  I did an analog version, which you can find here in PDF form:

07 - CW - Boat Race

 

This year, when looking at my materials in the revamped Math 9 course, I felt compelled to take a crack at my own digitization of this activity.  Here's the result:

Screen Shot 2016-02-24 at 12.29.18 AM

You can also visit the live site here and try it out yourself.

Boat Race

The moving circle moves painfully slow by design. Students will (hopefully) be compelled to do a good job of calculating distances and angles accurately. I plan to give them the analog version on paper for planning purposes. Shortest time by the end of the class wins fame and glory.

An Easy Transformation: Right Triangle Trigonometry

From Haese and Harris MYP 9:

Screen Shot 2016-02-21 at 5.07.33 PM

I was looking for problems to give my students as applications of the right angle trigonometry from our previous class. The problem is essentially equivalent to the basic questions requiring them to find an unknown side or angle - the work is all done for them. One of my standards is all about parsing a word problem for the information needed to answer it, and this question does not require students to do any parsing.

I removed all of the measurements, and this problem became remarkably more demanding:

Screen Shot 2016-02-21 at 5.08.48 PM

This will certainly prompt more conversation than in its original form.

It's embarrassing how easy it was to make this change - I anticipate a nice payoff in class.