# On not getting in the way.

Today continued a run of some great class time working on electric circuits. Our whole class period (85 minutes) consisted of looking at the following six circuits:

### Circuit 1

Describe what you would expect to happen when this circuit is connected.

A student blurted out this would be a short circuit, so things would get hot. Everyone immediately agreed (WHY DID YOU BLURT THAT OUT!). Still time to save it; I ask why it is a short circuit?

Answer: Because the path through the wire is shorter than traveling through the resistors.

I smirk.

### Circuit 2

Groans from students...then a more refined answer about differences of resistance between the two branches of the wires.

### Circuit 3

Tell me anything you can tell me about this circuit. If you see something to calculate, calculate it. Build the circuit on the PHET circuit constructor and show that your calculations confirm what happens in the simulator.

Insert student-centered-learning opportunities and fantastic conversations between students here. Students seeing a difference between their answers and what the simulation is telling them causes conflict that they help each other to resolve. Some students bring up the term 'parallel', which I've never said in class. Others don't understand what that is, so there is some fighting. One student describes qualitatively what should happen and then shows he is correct in the simulation, no calculations. Furthermore, this student usually is one that gets anxious when there are limited formulas to cling to, which is the norm in my class.

### Circuit 4

Repeat the same procedure. Calculate what you can calculate. Build the circuit in the simulator and verify. Explain away differences, or see if there is something you are missing.

Continued progress in recognizing this is a combination of series and parallel resistors, but I don't make a big deal out of this. A couple students look up formulas and discover the idea of finding equivalent resistance (which I have never mentioned to them). This helps, but the simulator telling them what the correct answers are is key. They are compelled to get the simulator's answers through calculation - it's almost as if they feel the simulator is cheating by giving them the answers, so they must understand how to get it on their own. Eventually, they are convincing each other why they are right.

### Circuit 5

Same as before, tell me anything you can tell me about this circuit. If you see something to calculate, calculate it. Build the circuit on the PHET circuit constructor as a last resort and to show that your reasoning has led to a correct analysis of the entire circuit.

This time the students hit a wall. Some continued finding equivalent resistance and the battery current, but weren't sure how to find the current through the 10 ohm and 30 ohm resistors. One reasoned it would split proportionally, and confirmed the answer using the simulator. Another measured the voltage across one of the 10 ohm resistors using the simulated voltmeter, measured the current, and then calculated the voltage difference across it. Repeating for the other resistor, they figured out the voltage difference across the parallel resistors, which then led to a current calculation. Again, I only had to tap students in the right direction - the rest was them helping each other.

### Circuit 6

Try to analyze this circuit completely using what you have learned today. Once you are convinced you have accounted for all voltage differences and all current, build it in the simulator to confirm your answers. Find a way to calculate the power used by the 20 ohm and the 10 ohm resistors separately - look it up if you want.

They did a fantastic job of figuring this out - some very quickly and quantitatively. One student that oftenstruggles with concepts figured out how the current between the different branches would compare, and reasoned which ones would have the greatest voltage difference across them.

Then I started lecturing about the equivalence of electrical power and mechanical power, and the magic disappeared. They stopped talking and returned to compliance mode. I saw that happening, so I stopped. Anything I could do at this point would only ruin what was quite possibly a perfect learning experience for them.

When I taught AP Physics, we spent a day on series circuits and deriving resistance formulas, a day on parallel circuits and deriving equations for parallel resistors, and then another day on analyzing circuits that have both. Before today, I had never used the term 'parallel' with my students. This time they brought it up. They now have the ability to analyze the same level of circuits as my former AP students, but this group was able to figure much of it out on their own, with no mention of memorization of formulas and no extended periods spent listening to me blabber on about how 'going through the theory helps you understand'.

There is lots I could say about this, but I think the points made are pretty clear. Let's just say that I'm really proud of my students work today.

# Processing, Pong, and Kinetic Theory

I've been playing around with using Processing as a way to quickly get my Calculus students doing some programming. One of my experiments was in using what I've learned over the past couple months about object oriented programming to make the game have multiple balls in play at once.

Once I saw how well this worked, it turned rapidly into an attempt to max out my processor. The balls have random initial locations, and 'speeds' distributed uniformly between -2 and 2 pixels/frame.

The pong program keeps track of the bounces off of the left and right walls, and uses this as a basic way to calculate a score. When I saw this, it looked just like a kinetic theory simulation for ideal gases, though the particles are only bouncing off of the walls, not each other. That bounce variable keeps track of the collisions with the walls - can anything cool that can be calculated just from the picture alone and the number of collisions?

Processing sketch can be found here.

# Electric Circuits - starting at the end.

We only have a couple weeks of class left, and there's not enough time to do the traditional Physics B sequence that I've used for electricity with my seniors that asked for a non-AP physics course at the beginning of the year. Normally I do electrostatics for a couple of weeks, talk about electric fields and potential, and then use these concepts to motivate a treatment of electric circuits. I could have stretched that out, but given my freedom in pace and curriculum, I decided to switch everything around.

This year, I started at the end of my sequence to address a pretty big issue I've always seen with my students. As much as they talk about charging (mobile devices, laptops) and basic energy conservation such as turning lights off, they have a pretty fuzzy understanding of electricity and the origins of the energy they use everyday. Some of the last topics in my traditional sequence involve real voltage sources, batteries and internal resistance - the "real" electronics that you need to know if you want to actually build a circuit. You know, the actually interesting part.

There's nothing interesting in looking at a circuit and calculating what current is going through an arbitrary resistor in a given circuit.  It took me a while to come to this realization because I still have some brain cells clinging to the "theory first, application second" philosophy, the same brain cells I've been working to silence this year. These are the sorts of things I want my students to learn to do:

• Build a charger for an iPod using a solar panel and some circuit components. What is involved in charging a battery in a way that the battery will actually charge up without blowing Nickel and Cadmium all over the classroom?
• Create a circuit that lights up an LED with the right current so it can outlast an incandescent bulb.
• Look at an AC adapter that isn't made for a given device, and modify it so that it does work. The fact that it only costs \$5 to buy a new one is irrelevant when you compare it to the feeling you get when you realize this is not hard to do. (Thanks Dad!)
• Generate electricity. Figure out how hard you have to physically work to run your laptop.

This is what we did on day one:

I gave them a solar panel, some small DC motors and LEGO motors, a stripped down version of our FIRST Tech Challenge robot, some lemons, clip leads, and different kinds of wire, and said I wanted them to use these tools to generate the highest voltage they could. There was also a bag of green LEDs on the table there for them to play with. There was a flurry of activity among my five students as they remembered something vaguely from chemistry about sticking different metals into a lemon, and needing to connect one to another in a certain way. They did so and saw that there was a bit of a voltage from the lemons they had connected together, but that there wasn't much there.

I then showed them one of the LEGO motors and had them see what happened on a connected voltmeter when the axle was rotated. They were amazed that this also generated an electrical potential. This turned immediately into a contest of rotating the motor as quickly as possible and seeing the result on the voltmeter. One grabbed an LED and hooked it up and saw that it lit up.

They then turned to the robot and its big beefy motors. They found I had a set of LED lights in my parts box and asked to use it. Positive results:

The solar panel was also a big hit as it resulted in us going outside. They were impressed with how "much" electricity was generated after seeing the voltmeter display over 15 volts - they were surprised then to see that it worked to turn on the LED display, but not any of the motors they tried.

At this point it was the end of the class block, so we put everything away and went on with our day.

Some of the reasons I finished the day with a smile:

• There was never a moment when I had to tell any of the students to pay attention and get involved in the activity.  The variety of objects on the table and the challenge were enough to get them playing and interacting with each other.
• While I did show them how to play with one of the tools (i.e. DC motor acting as generator) , they quickly figured out how they might transfer this idea to the other items I made available.
• They made bits of progress toward the understanding that voltage alone was not what made things work. This is a big one.

The next day's class used the PHet circuit construction kit to explore these ideas further in the context of building and exploring circuits. We had some fantastic conversations about voltage of batteries, conventional vs. electron current, and eventually connected the idea of Ohm's law (which was floating around in their heads from middle school science) to the observations they made.

I was struggling for a while about how to approach electricity because I have always followed the traditional sequence. In the end, I realized that I really didn't want to go through electrostatics - I wasn't excited to teach it this time around.  I also realized that I didn't need to do so, either in order to teach my students what I really wanted them to learn about electricity.

I think this approach will help them realize that electricity is not magic. They can learn to control it. I admit that doing so can be dangerous and expensive if one doesn't know what he or she is doing. That said, a little basic knowledge goes a long way, even in today's world of nanometer sized transistors.

Tomorrow we attempt the LED lighting assignment - feel free to share your comments or suggestions!

# Results of a unit long experiment in SBG and flipping.

## Algebra 2

The unit focused on the students' first exposure to logarithmic and exponential functions. The situation in Algebra 2 was very similar to Geometry, with one key difference. The main difference of this class compared to Geometry is that almost all of the direct instruction was outsourced to video. I decided to follow the Udacity approach of several small videos (<3 min), because that meant there was opportunity (and the expectation) that only two minutes would go by before students would be expected to do something. I like this much better because it fit my own preferences in learning material with the Udacity courses. I had 2 minutes to watch a video about hash functions in Python while brushing my teeth - my students should have that ability too. I wasn't going for the traditional flipped class model here. My motivation was less about requiring students to watch videos for homework, and more about students choosing how they wanted to go through the material. Some students wanted me to do a standard lesson, so I did a quick demonstration of problems for these students. Others were perfectly content (and successful) watching the video in class and then working on problems. Some really great consequences of doing things this way:

• Students who said they watched all my videos and 'got it' after three, two minute videos, had plenty of time in the period to prove it to me. Usually they didn't.. This led to some great conversations about active learning. Can you predict the next step in the video when you try solving the problem on your own? What? You didn't try solving it on your own? <SMIRK>  The other nice thing about this is that it's a reinvestment of two minutes suggesting that they try again with the video, rather than a ten or fifteen minute lesson from Khan Academy.
• I've never heard such spirited conversation between students about logarithms before. The process of learning each skill became a social event - they each watched the video together, rewound or paused as needed, and then got into arguments while trying to solve similar problems from the day's handout. Often this would get in the way during teacher-centered lessons, and might be classified incorrectly as 'disruption' rather than the productive refining and conveyance of ideas that should be expected as part of real learning.
• Having clear standards for what the students needed to be able to do, and making clear what tools were available to help them learn those specific standards, led to a flurry of students demanding to show me that they were proficient. That was pretty cool, and is what I was trying to do with my quiz system for years, but failed because there was just too much in the way.
• Class time became split between working on the day's standards, and then stopping at an arbitrary time to then look at other cool math concepts. We played around with some Python simulations in the beginning of the unit, looked at exponential models, and had other time to just play with some cool problems and ideas so that the students might someday see that thinking mathematically is not just followinga list of procedures, it's a way of seeing the world.

I initially did things this way because a student needed to go back to the US to take care of visa issues, and I wanted to make sure the student didn't fall behind. I also hate saying 'work on these sections of the textbook' because textbooks are heavy, and usually blow it pretty big. I'm pretty glad I took this opportunity to give it a try. I haven't finished grading their unit exams (mostly because they took it today) but I will update with how they do if it is surprising.

# Why I'm thinking today about the Tufts class of 2012.

I had my first group of ninth grade students during my second year teaching in the Bronx. It's a unique experience being an adult mentor to a group of students fresh out of middle school. I've always gotten a kick out of seeing them first test the rules in their new high school environment, and this group being my first, it was new to me as well.

It has been a while since I've heard from many of them. I'm proud to say that a number of students from this group will be donning caps and gowns over the next couple of weeks to celebrate their earning undergraduate degrees. There's a whole list of superlatives that describe the magnitude of pride I feel for this group and their accomplishments. As a digital pack-rat, I've held on to the spreadsheets I used to keep track of grades. I took a look at them just before writing this, which prompted a slideshow of smiling faces as I went through the list, name by name. I think I could vaguely place them in their seats in the classroom, but in all likelihood, this was just as likely my brain coddling me in my hope that I could remember such minimal details.

One student in particular in this group is pushing me to assert my bragging rights.

As I've mentioned other times on my blog, I am a proud graduate of Tufts University, majoring in Mechanical Engineering as a member of the class of 2003. It was through my work as a resident tutor in math and physics that I discovered that I had an interest in teaching, and this prompted me to apply to alternative certification programs that would help me do this. I could have applied my engineering credentials to be one engineer in the working world. Another option was to teach students to become engineers too, in effect, multiplying my own influence on the field. Through the New York City Teaching Fellows , I joined the faculty at Herbert H. Lehman high school in the Bronx during the fall of 2003 to teach math.

The first year was a blur. It was the fastest I've ever needed to learn a multidimensional set of skills and the most agonizing; I knew when I wasn't getting across to my students and had few tricks to use in managing a class. The one thing I figured out very quickly though was that the students in my classes were sharp. They were good at picking up on things presented in the right way. Their skills were not necessarily where they needed to be, but that is a work in progress that can be managed through classroom work. I saw there was tremendous opportunity to help those students that were interested to become engineers.

I've had a number of students follow this route through my courses in math, engineering, and AP Physics. They chime in from time to time to let me know what they are doing, and I am always really impressed with their work. I've also had the occasional graduate write me to ask if it's alright with me to not study physics or engineering as they originally planned to do. I am, of course, fine with this! I am always telling my students to go where their passions are, and am always a bit amused when they are afraid they are letting me down with such an admission.

The special case that I am writing about today is a young man that not only followed the engineering path, but decided to go to Tufts himself after leaving Lehman. He was a member of my first group of ninth graders, and though he was quickly switched into another section that year, he joined me for physics during his senior year. He also frequently contributed to the robotics team, never shying away from tackling the big challenges of robot design or from the small tasks of sweeping the shop floor at the end of the day. He also honored me during his senior year by speaking at a ceremony at which I received an award for my work, and his very kind words have stuck with me ever since.

It isn't a miracle that he will cross the stage to receive his Tufts diploma today. Far from it - he did the hard work to get where he is, and I can't take credit for the great things he learned both in my presence and away from it. And his story is far from over - I hope he (like many other students I've told this) keeps me in mind if I ever need a job. His story, and those of the rest of his class earning degrees this month, make me incredibly proud to be a teacher.

That said, there is something special about our story. The unique way that Tufts now connects us is unlike any I've ever had with others, even with my own Tufts classmates in the class of 2003. I hope that he can look back fondly to his times on campus as I do from time to time. For whatever small part I served in getting him there, I am glad to have helped him out.

I have nothing but excitement and pride for the adventures that lay ahead of him and his classmates.

Congratulations, Class of 2012!

# What my mom taught me about patience.

Looking back over the students I've taught over the past nine years, I can say that I've worked with some phenomenal youngsters. Many of the proudest moments have been those that have required a great deal of patience in moving them forward and helping them develop. There are many times when I've felt I owe it to the world to be patient because, well, I know others were patient with me. When a toddler sits behind me and plays the 'kick-the-seat' game on a flight, I just sit and take it. I played that game. Actually, I did worse - I perfected an imitation of the call-button ping so that flight attendants would hear the sound, and then look around frantically for the light indicating which row needed attention. I would giggle hysterically; my mom (I assume) hid her face and shook her head.

My mom's patience has always been boundless. When I would make messes in the kitchen with my experiments, she would kindly ask that I clean up after myself. In the many cases that I didn't, she would remind me, often while I stirred my chocolate milk, loudly. Then I would slurp it, spoon by spoon, each successive clink of the spoon on the glass louder until she would snap, screaming my name sharply to tell me to just drink it. One more clink, then compliance.

I wasn't the only one that pushed the limits of her sanity. As the middle child of three brothers, we were the worst/best when we worked toward the common goal of mayhem in her midst. Shopping trips at the grocery store were opportunities to get extra things into the cart. In spite of her vigilance, we often succeeded in getting giant rubberband balls, quart containers of honey, and boxes of sugar cereals she subsequently kept from us.

In spite of all of the ways we tested her, she still went out of her way to give us the enriching experiences that shaped who my brothers and I have become. She signed me up for magic lessons at the library. She not only tolerated my interests in collecting insects and animals and getting unbelievably muddy during the process, but scrounged up things like mason jars and film canisters and all the books, field trips, and camps she could find to learn to do these things well. She has always kept me honest. She would look up the facts I claimed were true to see if I was full of it, as I had repeatedly proven I could be. She was the one that broke the news to me that the reason my hamster couldn't walk that morning because it had a tumor. After tolerating my tears and anger in the midst of the devastating tragedy this was for me at the time, she followed with a completely straight-faced phone conversation with a veterinarian about how one might go about putting down a hamster.

One of the reasons I can maintain a positive outlook on things is that I know that good people are looking out for me. I do my best when people demand the best I have to offer, but understand that there will always be setbacks and failures along the way. My mom was doing this long before I ever realized or appreciated it. Striking the balance between being strict and direct with rules and directions and granting the freedom to try and explore and learn from one's mistakes is the hardest part of being a teacher. But I get to go home and try again the next day with my students. She put up with my stomping around and singing for no pay in the same house, and had only a crossword puzzle to hide behind.

She managed this balance like a pro, despite the working conditions. I still push her buttons and put my smelly feet on the kitchen table. She shoots the same look she gave me when I was nine. This sort of consistency is rare. It is also what makes me smile knowingly when my students start playing the button-pushing game with me. I just smile and nod to defuse the situation, and that works well enough for me.

The thing I can never get right in the moment, however, the secret that I think my mom had figured out from the beginning is this: she always let me think I had won. I could go on to torture one of my brothers; she could get back to taking care of the important stuff, and being entertained by seeing us battling with each other. I can't say for sure that this was her tactic. She knew a lot more than she let on when I was younger, but has always been modest enough to just say that I knew how to drive her crazy. I think that is true. I have this sneaking suspicion though that she has always had the upper hand.

I wish her a wonderful Mother's day. I am committed to trying to be as patient with my students as she was with me, as well as to leaving my dirty socks on her computer in the near future. For the record though: I maintain that Ben was involved in the sandwich incident that resulted in my head getting cracked open.

# Geometric Optics - hitting complexity first

I started what may end up being the last unit in physics with the idea that I would do things differently compared to my usual approach. I taught optics as part of Physics B for a few years, and as many things end to be in that rushed curriculum, it was fairly traditional. Plane mirrors, ray diagrams, equations. Snell's law, lenses, ray tracing, equations. This was followed by a summary lesson shamefully titled "Mirrors and lenses are both similar and different" , a tribute to the unfortunate starter sentence for many students' answers to compare and contrast questions that always got my blood boiling.

This time, given the absence of any time pressure, there has been plenty more space to play. We played with the question of how big a plane mirror must be to see one's whole body with diagrams and debate. We messed with a quick reflection diagram of a circular mirror I threw together in Geogebra to show that light seems to be brought to a point under certain conditions. Granted, I did make suggestions on the three rays that could be used in a ray diagram to locate an image - that was a bit of direct instruction - but today when the warm up involved just drawing some diagrams, they had an entry point to start from.

After drawing diagrams for some convex and concave mirrors, I put a set of mirrors in front of them and asked them to set up the situation described by their diagrams. They made the connection to the terms convex and concave by the labels printed on the flimsy paper envelopes they were shipped in - no big introduction of the vocabulary first was needed, and it would have broken the natural flow of their work. They observed images getting magnified and minefied, and forming inverted or upright. They gasped when I told them to hold a blank sheet of paper above a concave mirror pointed at one of the overhead lights and saw the clear edges of the fluorescent tubes projected on the paper surface. They poked and stared, mystified, while moving their faces forward and backward at the focal point to find the exact location where their face shifted upside down.

After a while with this, I took out some lenses. Each got two to play with. They instantly started holding them up to their eyes and moving them away and noticing the connections to their observations with the mirrors. One immediately noticed that one lens flipped the room when held at arms length but didn't when it was close, and that another always made everything smaller like the convex mirror did. I asked them to use the terms virtual and real, and they were right on. They were again amazed when the view outside was clearly projected through the convex lens was held in front of a student's notebook.

I hope I never take for granted how great this small group of students is - I appreciate their willingness to explore and humor me when I am clearly not telling them everything that they need to know to analyze a situation. That said, there is really something to the backwards model of presenting complexity up front, and using that complexity to motivate students to want to understand the basics that will help them explain what they observe. Now that my students see that the lenses are somehow acting like mirrors, it is so much easier to call upon their curiosity to motivate exploring why that is. Now there is a reason for Snell's law to be in our classroom.

Without planting a hint of why anyone aside from over excited physics teachers would give a flying fish about normals and indices of refraction, it becomes yet one more fact to remember. There's no mystery. To demand that students go through the entire process of developing physics from basic principles betrays the reality that reverse engineering a finished product can be just as enlightening. I would wager that few people read an instruction manual anymore. Even the design of help in software has changed from a linear list of features in one menu after another to a web of wiki-style tidbits of information on how to do things. Our students are used to managing complexity to do things that are not school related, things that are a lot more real world to them. There is no reason school world has to be different from real world in how we explore and approach learning new things.

# Planning for instruction: Not just for humans!

My wife and I welcomed a new member to our family a couple months ago. Meet Mileaux:

His name is a play on the more standard Milo, with the end spelled in the Cajun way as a tribute to Josie (my wife's) roots. He's now around six months old. We're not exactly sure what he is - the current theory is a mix of a Pekinese and a Pomeranian, but there are hints of a whole bunch of other dogs in his behavior. His hobbies include chewing on towels and begging on command with his paws clenched together like an Italian soccer player trying to get out of a yellow card call. You have to see it to understand how spot on this description is.

Training him has been really interesting. As with every other part of my life since I started teaching, it serves as yet one more source of data on how learning occurs naturally. A disclaimer:

Yes, I know that my students are not dogs. I am saying, for the purposes of understanding the learning process, that outside of the supremely unnatural structure currently called 'school', that some aspects of learning are universal. As another comparison with my students, I can say for sure that Mileaux doesn't like when I lecture him either.

Mileaux shows a lot of behavior that makes sense when thinking about how learning really should happen. He responds more strongly to positive reinforcement than negative, and the negative (when we do resort to it) has the consequence of sometimes leaving him confused rather than corrected. He sometimes gets tired of learning when he's had enough. Sometimes he just needs to take a break in order to get it the next time.

One command we hadn't tried until today was to lay down. We hadn't really figured out the best way to do it. Yes, there are videos with suggestions on how to do it, but it's fun to try to figure out how to communicate what we want him to do. I went for a quick 20-minute run to think of how I wanted to approach it. Here was my process:

• I knew what he already knew how to do - specifically to sit. That seemed like a good entry point into getting him to lay down.
• He just had his Lepto shot yesterday and was consequently a bit stiff and sore today. I didn't want to use a leash or pressure to urge him into the down position. I wanted him to be able to figure out what we wanted him to do, and do it on his own.
• There would, of course, be treats involved in the process when he did exactly what I wanted him to do.

Since he knew how to sit, I could put a treat within his reach laying down on the floor in my fingers. Any time he got up to move toward the treat, I would again give the sitting command. After around five minutes of doing this, he figured out that he needed to stay seated, and chose to stretch out into an awkward leaning position with his head arched down toward the ground. Then came strained reaching and pawing toward the treat on the floor. Soon after, he realized that laying down was a much more comfortable option for getting the treat, and started doing that every time. Copious petting, treats, and praise followed.

The connections to teaching content?

• There is no paragraph in the textbook introducing the concept of laying down. Mileaux and I didn't read it together and then do a share-out. I just needed to clearly define what I wanted him to learn, and this didn't involve words.
• While it is true that the skill of 'sitting' is one that he needed to have beforehand for my method to work, if he didn't, I would have chosen another entry point to the activity. He lays down every day. He knows what it is. My goal for him was to make the connection between this skill of laying down with the verbal command. The knowledge he already had was really useful in helping him understand what he needed to do, but the background knowledge was not necessarily a prerequisite for the task we were doing.
• I posed the problem in a way that had constraints that he figured out on his own. I couldn't tell him not to move his hind legs. That limitation needed to be obvious to him as part of the activity. Managing this limitation as part of getting the delicious snack was what led him to learn the command as quickly as he did.
• I had him go through this activity from a number of different starting points - standing up in the kitchen, sitting next to the couch, begging in the doorway - because I needed him to see that in these different contexts, the one skill I wanted him to learn was to lay down on command. He figured out that it was the common thread, and not any of the other simpler cues or tricks he could have used as a crutch or shortcut.
• He didn't do exactly what I wanted him to do, and felt alright about that. He knew it was just fine to get things wrong. The key to his getting it right in the end was clearly communicating when he did what he was supposed to do.

Granted, this may be strained. I accept that this may not be immediately be applicable to everyone's classrooms. I do think it's important to think about what we are asking our students to do, how we are communicating those objectives, and how we are helping them develop a healthy mindset toward learning along the way. We need to be thinking about knowledge in the context of figuring out problems. Solving them is an innate part of living in the world, whether as a snail, a dog, or as a human. The more we can create learning experiences that connect to this need to challenge and interact with our world, the more effective these experiences can be for our students.